
Hyper-Minimization in O(n2)

Andrew Badr
andrewbadr@gmail.com

Flowgram Research Division
650 Townsend #315

San Francisco, CA 94103

Abstract. Two formal languages are f-equivalent if their symmetric differ-
ence L1 △ L2 is a finite set — that is, if they differ on only finitely many
words. The study of f-equivalent languages, and particularly the DFAs that
accept them, was recently introduced [1]. First, we restate the fundamen-
tal results in this new area of research. Second, our main result is a faster
algorithm for the natural minimization problem: given a starting DFA D,
find the smallest (by number of states) DFA D

′ such that L(D) and L(D′)
are f-equivalent. Finally, we present a technique that combines this hyper-

minimization with the well-studied notion of a deterministic finite cover

automaton [2–4], or DFCA, thereby extending the application of DFCAs
from finite to infinite regular languages.

1 Introduction, Notation, and Prior Results

We use the standard definition of a DFA as a 5-tuple (Q,Σ, δ, q0, A) where Q is the
state-set, Σ is the alphabet, δ is the extended transition function, q0 is the starting
state, and A is the accepting subset of Q. For more on DFAs, see any standard ref-
erence [5, 6]. In all algorithm analyses, “n” implicitly refers to the number of states
of the DFA in question. Where it is unspecified, Lx is assumed to be a language, Dx

a DFA, and qx a state. Finally, subscripted components such as Q1, δ1 etc. should
be assumed to be part of a DFA D1.

The now-classical notions of DFA equivalence and minimization are well-studied
[5, 6]. Two DFAs D1 and D2 are equivalent if the languages they induce (L(D1) and
L(D2)) are equal. We write this as D1 ≡ D2. In the recently-introduced study of
f-equivalence [1] 0, this condition is loosened: instead of requiring that the languages
be equal, one allows them to differ by finitely many words.

Definition 1 (f-equivalence). Two languages L1 and L2 are said to be f-equivalent
if L1 △ L2, their symmetric difference, is a finite set. We write L1 ∼ L2. This
relation is extended to DFAs in the obvious way: if L(D) is the language rec-
ognized by a DFA D, then we write D1 ∼ D2 whenever L(D1) ∼ L(D2). Fi-
nally, f-equivalence can also be considered on DFA states. States q1 and q2 are
f-equivalent (q1 ∼ q2) if their induced languages (sometimes called right-languages)
are f-equivalent (L(q1) ∼ L(q2)). States q1 and q2 need not be in the same DFA.

0 There, f-equivalence is called either “almost equivalence” or “finite difference”. We use
the new term here because it is shorter, and cannot be misunderstood as excluding total
equivalence.

Many interesting features of the f-equivalence relation have been discovered. In this
section, we restate and explain the most important of these to the reader (since
these ideas are still new). One should, however, refer to the original paper for anal-
yses.

Like classical equivalence, f-equivalence can be seen as an equivalence relation on
either the languages themselves (we write L1 ∼ L2) or the DFAs recognizing them
(D1 ∼ D2). DFA f-equivalence (like classical-equivalence) is an equivalence-relation,
so it partitions the set of all DFAs into equivalence-classes. Since two classically-
equivalent DFAs are also trivially f-equivalent, the classical-equivalence partition is
a refinement of the f-equivalence partition.

We begin with two trivial but very useful results:

Proposition 1. Let q1 be a state from DFA D1, and q2 be a state from D2. If
q1 ∼ q2, then for any input c: δ(q1, c) ∼ δ(q2, c).

Note the analogous statement about classical equivalence.

Corollary 1. If D1 ∼ D2, then (∀q1 ∈ Q1,∃q2 ∈ Q2, : q1 ∼ q2).

Again, this is directly analagous to a statement for classical equivalence: if two DFAs
are equivalent, their states occupy the same set of Myhill-Nerode equivalence classes.

Next, we define a partition of every DFA’s state set which turns out to be crit-
ical to the study of f-equivalence:

Definition 2 (Preamble and Kernel). For any DFA D = (Q,Σ, δ, q0, A), Q is
partitioned into the preamble and kernel parts: P (D) and K(D). A state q is the
preamble P (D) if its left-language is finite — that is, if there are only finitely many
strings w such that δ(q0, w) = q — and in the kernel otherwise. In short, the states
are divided according to whether they are reachable from q0 by only finitely many or
by infinitely many strings.

Finally, we go through the f-equivalence isomorphism and minimality results. Once
again, we emphasize that the interested reader should refer to the original for proofs
[1]. The results are presented here primarily as background, and also to give these
ideas wider exposure.

Definition 3 (Kernel Isomorphism). Given DFAs D1 = (Q1, Σ, δ1, q0,1, A1)
and D2 = (Q2, Σ, δ2, q0,2, A2), we say that D1 and D2 have isomorphic kernels
(and write D1

∼=K D2) when there exists a bijection f : K(D1) → K(D2) such that

1. ∀q1 ∈ K(D1) : q ∈ A1 ⇔ f(q) ∈ A2 and
2. ∀q1 ∈ K(D1),∀c ∈ Σ : f(δ1(q1, c)) = δ2(f(q1), c).

Theorem 1 (Kernel Isomorphism). If D1 ∼ D2 and both are classically mini-
mized, then D1

∼=K D2

Definition 4 (Hyper-minimality). A DFA D1 = (Q1, Σ, δ1, q0,1, A1) is called
hyper-minimized if for any DFA D2 = (Q2, Σ, δ2, q0,2, A2), it holds that (D1 ∼
D2) ⇒ (|Q1| <= |Q2|).

Theorem 2 (Characterizing Hyper-minimality). A DFA D = (Q,Σ, δ, q0, A)is
hyper-minimal if and only if:

1. D is classically minimized, and
2. ∀q1 ∈ Q,∀q2 ∈ (Q − {q}) : (q1 ∼ q2) ⇒ (q1 ∈ K(D) ∨ q2 ∈ K(D)).

Definition 5 (Preamble Isomorphism). Given DFAs D1 = (Q1, Σ, δ1, q0,1, A1)
and D2 = (Q2, Σ, δ2, q0,2, A2), we say that D1 and D2 have isomorphic preambles
(and write D1

∼=P D2) when there exists a bijection f : P (D1) → P (D2) such that:
∀qa ∈ P (D1),∀qb ∈ P (D1),∀c ∈ Σ : δ1(qa, c) = qb → δ2(f(qa), c) = f(qb).

The definition of preamble isomorphism is weaker than kernel isomorphism because
f does not preserve acceptance (membership in A).

Theorem 3 (Preamble Isomorphism). If D1 ∼ D2 and both are hyper-minimized,
then D1

∼=P D2

Notice that Theorem 5 requires that the automata are hyper-minimized while The-
orem 1 only requires them to be classically minimized. To conclude this section, we
briefly note that these two isomorphism theorems are optimal in the sense that any
aspect of the DFA that they do not preserve can indeed vary between f-equivalent
and hyper-minimized automata. These are the start state q0, acceptance in the
preamble (P (D) ∩ A), and transitions leading from the preamble to the kernel.

2 Hyper-Minimization Algorithm

2.1 Algorithm Overview

The problem of hyper-minimization is a fundamental part of the study of f-equivalence,
and perhaps the most strongly motivated. Given a starting DFA D, we seek the
smallest D′ (by number of states) such that D ∼ D′. Here, we present a new hyper-
minimization algorithm, which is the fastest yet known. The original algorithm ran
in O(n3)-time; this one runs in O(n2). Furthermore, this algorithm is more direct,
involving no iterative partition refinement, and uses the perhaps surprising tech-
nique of constructing the cross-product of a DFA with itself.

We begin with a top-down sketch of hyper-minimization, then explain the com-
ponents from the bottom up. Both the new and the original hyper-minimization
algorithms share the following highest-level structure:

Algorithm 4 (hyper-minimize).
Input: a starting DFA D = (Q,Σ, δ, q0, A)
Output: a hyper-minimized version of D

1. Let D′ = minimize(D), where ‘minimize’ is classical DFA minimization
2. Let E = f equivalence classes(D′) be the partition of Q′ into f-equivalence

classes, for example via Algorithm 6 (Main Result) below
3. Let P,K = preamble and kernel(D′) be the preamble and kernel subsets of Q′,

for example via Algorithm 7 below
4. f merge states(D′, E, P,K), for example via Algorithm 8 below. This is the

operation of merging states within each f-equivalence class.

5. Return D′

Because the new and original algorithms share this outline, we refer to the original
for proof that it is valid [1]. As with classical minimization, the meat of the problem
is in finding the state equivalence classes, which is the only step that here differs
from the original paper.

We claim that the four steps of Algorithm 4 can be executed in quadratic time.
Step 1, famously, can be accomplished in O(n ∗ log(n)) time [6] and requires no
further explanation. Step 2 is explained in more detail as Algorithm 6. We prove
below that it can be accomplished in time O(n2). For full explanations and analyses
of Steps 3 and 4, the reader is referred to the original paper [1], though we do offer
an overview below.

Implementations of all the algorithms in this paper are available in the Python
programming language at http://ianab.com/hyper/

2.2 Algorithm Details

The above hyper-minimization outline is roughly analagous to one for classical DFA
minimization:

1. Remove all unreachable states
2. Partition the states into Myhill-Nerode equivalence-classes
3. Collapse each equivalence class into a representative state

Almost all DFA minimization algorithms fit into this framework [7]. As in hyper-
minimization, the meat of the problem is in partitioning the states into equivalence
classes, with the other steps being quite straightforward in comparison. (One differ-
ence is that the collapsing of classes is more complicated under hyper-minimization,
requiring the computation of the kernel and preamble.)

We will now work up towards Step 2 of Algorithm 4, presenting and analyzing
the new method by which a partition into f-equivalence classes can be accomplished
in time O(n2). This is our main result. Afterwards, we will discuss Steps 3 and 4 of
Algorithm 4.

Our algorithm will use the following version of the standard cross-product DFA
construction [6].

Definition 6 (xor cross product). Given DFAs D1 = (Q1, Σ, δ1, q0,1, A1) and
D2 = (Q2, Σ, δ2, q0,2, A2), define xor cross product(D1,D2) = D⊗ = (Q⊗, Σ, δ⊗, q⊗

0
, A⊗)

as follows:

1. Let Q⊗ = {(q1, q2) : q1 ∈ Q1 ∧ q2 ∈ Q2}
2. ∀q1 ∈ Q1,∀q2 ∈ Q2,∀c ∈ Σ : Let δ⊗((q1, q2), c) = (δ1(q1, c), δ2(q2, c))
3. Let q⊗

0
= (q01

, q02
)

4. Let A⊗ = {(q1, q2) : (q1 ∈ A1) ⊗ (q2 ∈ A2)} where ⊗ is the xor operation

Note that the three DFAs share the same alphabet Σ.

Algorithm 5 (right finite states).
Input: a DFA D = (Q,Σ, δ, q0, A), and the set S of all states in Q that induce the
empty language (that is, S = {q ∈ Q : ∀w ∈ Σ∗ : δ(q, w) /∈ A}).
Output: the subset F ⊂ Q of all states that induce a finite language
Running-time: O(n)

1. Let S′ be the complement of S
2. For each state q let Incomingq and Outgoingq be new empty sets
3. For each q ∈ S′: for each c ∈ Σ:

(a) Let q′ = δ(q, c)
(b) Add (q, c) to the set Incomingq′

(c) Add (q′, c) to the set Outgoingq

4. Let F be a new empty list
5. Let to process be a new list equal to S
6. While to process is nonempty:

(a) Let q = pop(to process)
(b) Add q to F
(c) For each (q′, c) ∈ Incomingq:

i. Remove (q, c) from Outgoingq′

ii. If Outgoingq′ is now empty, add q′ to to process.
7. Return F

Proof (Algorithm 5). We seek to prove first that the algorithm is correct, and sec-
ond that it runs in linear time with respect to Q.

Correctness: When a state is added to F in the processing loop, we call it “re-
moved” from the DFA. This algorithm removes every state in the “sink-set” S, then
(while any such state exists) removes all states such that all the state’s outgoing
transitions lead to removed states. It remains to prove that a state is removed if
and only if it induces a finite language.

First, we prove that if a state is removed, then it induces a finite language. Note that
there are no transitions from S to a state in S′. Otherwise, the state in S′ would
also induce an empty language, so by assumption it would be in S. Next, assign
to each removed state q a distance d(q) from S, equal to the length of the longest
path from q to a state in S. We obtain the result by induction on d. If d(q) = 0,
then q ∈ S and |L(q)| = 0 by definition. The size of L(q) for any state q in a DFA
is bounded above by 1 + Σq′∈Outgoingq

L(q′). Therefore, if all removed states with
d <= n induce finite languages, it follows that all states with d = n + 1 also induce
a finite language, completing this direction.

Second, we prove that if a state q induces a finite language, it is removed by the
algorithm. Again we use a simple inductive proof. Let l(q) be the length of some
longest word w in L(q). If l(q) = 0 then q is in S, so it is removed by the algorithm.
If l = n, then for every state q′ ∈ Outgoingq, l(q′) < l(q). Therefore, if every state
with l <= n is removed by the algorithm, then every state with l = n + 1 is also
removed, because all states it transitions to are removed.

Speed: Building the Incoming and Outgoing sets takes linear time because it
takes a constant amount of time for each transition and the number of transitions
is linear with the number of states. Removing any state takes constant time (for
popping it from to process and adding it to F , plus some amount of work for each
incoming transition). Again, there are only O(n) transitions, so the latter part adds
up to work linear in the number of states. These steps compose the algorithm.

Algorithm 6 (f-equivalence-classes (Main Result)).
Input: a minimized DFA D = (Q,Σ, δ, q0, A)
Output: a partition of Q (the state-set of D) into the equivalence-classes determined
by the f-equivalence relation (the “f-equivalence classes”)
Running-time: O(n2)

1. Let D⊗ = xor cross product(D,D)
2. Let S = {(q, q) : q ∈ Q} be the set of all self-pair states in D⊗.
3. Let F = right finite states(D⊗, S) be the set of all states (q, r) such that (q, r)

induces a finite language in D⊗. (Algorithm 5)
4. Use the state-pairs in F to construct a partition P of Q:

(a) Let P be a new Union-Find data structure [8]
(b) For each state q ∈ Q: make a new set {q} in U
(c) For each (q, r) in F :

i. Let Pq = P.find(q)
ii. Let Pr = P.find(r)
iii. If Pr 6= Pq, then P.union(Pq, Pr)

5. Return P

Proof (Algorithm 6).
Correctness: For every word w ∈ Σ∗ and state (q, r) ∈ Q⊗ we have w ∈ L((q, r)) ⇔
δ⊗((q, r), w) ∈ A⊗ ⇔ (δ(q, w) ∈ A)⊗(δ(r, w) ∈ A) by definition. In other words, the
language L((q, r)) of every state in the D⊗ context equals the language L(q)△L(r)
in the D context. The first consequence of this is that S is exactly the set of states
in D⊗ that induce the empty language, because the given DFA D is minimized
(so no two distinct states induce the same language). This proves that the input
to right finite states is correct, and the result F is as desired. Thus, as a second
consequence of the above, we see that L((q, r)) is finite if and only if q ∼ r. There-
fore, F is the f-equivalence relation on the states in D. Step 4 turns this relation,
represented as a set of pairs, into a partition.

Speed: The DFA cross-product construction in Step 1 clearly takes O(n2) time.
Constructing S in Step 2 clearly takes O(n) time. In Step 3, we construct F us-
ing right finite states (Algorithm 5), which was proven to take time linear in the
number of states. Since the input DFA has n2 states, Step 3 takes time O(n2). In
Step 4, we iterate through O(n2) pairs and do an equivalent number of Find opera-
tions. Since there are only n states, at most n− 1 Union operations are performed.
Therefore, by using a Union-Find data-structure that has constant-time Find and
linear-time Union [8], this step also takes O(n2) time.

This concludes the main result of the paper. We now continue with Steps 3 and 4
from Algorithm 4. Once again, since these are exactly the same as in the original
paper[1], the reader is directed there for additional analysis.

Algorithm 7 (preamble and kernel).
Input: a DFA D = (Q,Σ, δ, q0, A)
Output: a pair of sets, the first containing the preamble states of D, and the second
containing the kernel states of D
Running-time: O(n2)

1. Let K be an empty set
2. For each q ∈ Q: let Rq be the set of states nontrivially reachable from q
3. For each q ∈ Q: if q ∈ Rq: Let K = K ∪ Rq

4. Return (Q − K,K)

Algorithm 8 (f merge states).
Input: a minimized DFA D = (Q,Σ, δ, q0, A), the partition E of its states into
f-equivalence classes, and the partition (P,K) of its states into the preamble and
kernel
Output: D is hyper-minimized
Running-time: O(n)

1. For each set S in E:
(a) Let PS = S ∩ P
(b) Let KS = S ∩ K
(c) If KS is non-empty: Let R = pop(KS)
(d) Else: Let R = pop(PS)
(e) For each state q in PS : merge q into R

The “merge” in the final step above refers to a procedure that is familiar from
classical minimization: all transitions to the first state are redirected to the second
state, and the first state is deleted from the automaton.

3 Finite-Factoring with the DFCA

In some sense, hyper-minimization pares down a regular language to its core. Outlier
words are added or removed to make the DFA as small as possible. However, in some
circumstances, one may want to keep track of exactly which words were changed in
the course of hyper-minimization. Such a list is not difficult to obtain: if D is the
original DFA and D′ is the hyper-minimized version, the xor cross product of D and
D′ recognizes precisely the finite difference that was changed. (A more complicated
algorithm could keep track of which words change during the minimization process.)

The DFCA, or deterministic finite cover automaton, is a fairly well-studied [2–
4] variation on the classical DFA. A DFCA can save space in recognizing finite
languages, in proportion to their redundancy, essentially by removing the need of
the DFA to “count” the length of the string. A DFCA C can be understood as a
pair C = (D, l) where D is a DFA and l is a non-negative integer. Now C accepts
a word w if |w| < l and D accepts w (where |w| is the length of w). Minimization
algorithms have been given [3] that, given a starting DFA D1 and maximum desired
length l, can quickly reduce the DFA to minimal DFCA C = (D2, l) that agrees
with D1 on all words of length less than l.

An obvious weakness of the DFCA is that its ability to remove the redundant
computation necessitated by counting can only be applied to finite languages. By
combining hyper-minimization with the DFCA, this weakness can for the first time
be overcome.

Definition 7 (Finite-Factored Automaton). A finite-factored automaton is a
pair (D,C) where the first item is a DFA and the second is a DFCA. A finite-
factored automaton accepts a word w if and only if exactly one of D and C accepts
w.

Algorithm 9 (finite-factor).
Input: a DFA D
Output: a finite-factored automaton pair (D′, C), where D′ is a DFA and C a DFCA,
such that for all words w, D accepts w if and only if (D′, C) accepts w.
Running-time: O(n2 ∗ log(n))

1. Let D′ = hyper minimize(D)
2. Let Df = xor cross product(D,D′)
3. Let l = max(|w| : w ∈ L(Df))
4. Minimize the DFCA (Df , l) [3]
5. Return (D′, (Df , l))

It is clear from a simple example that finite-factoring can greatly reduce the num-
ber of states required to recognize a regular language. Consider a language over
Σ = {0, 1, a, b, c, d, e} that accepts a word w if w contains only numbers and is up
to nine characters long, or if w contains only letters (of any length). This language
L requires eleven states to represent with a minimized DFA, and a DFCA cannot
be used directly because L is infinite. However, finite-factoring results in two states
for the DFA, and two states for the DFCA, for a total reduction of seven states.

This reduction seems to have been possible because L contains a finite-sized subset
of words that are amenable to reduction with a DFCA, and hyper-minimization
can be used to isolate this component. Analysis of this technique is left for future
research.

4 Conclusion and Open Problems

The question we address in this paper — in short, “What can be said about finitely-
different automata?” — is a quite natural one. However, it has (until recently) gone
unaddressed in the now half-century-long study of DFAs. In this paper, we reviewed
the fundamental results in this new area, then provided a significantly improved
algorithm for the central problem of hyper-minimization. We conclude with a few
open problems:

1. DFA minimization is famously solvable in time O(n∗logn). DFCA minimization,
too, was quickly reduced from O(n4) in the original paper [2] to an O(n ∗ logn)
algorithm [3]. Can hyper-minimization also be achieved in O(n ∗ logn)?

2. There are numerous open problems surrounding finite-factored automata. For
example: does the method presented here always result in the smallest total
number of states? If not, are some hyper-minimized automata in the same equiv-
alence class better than others?

3. Starting with a minimized DFA, first change the acceptance values of selected
preamble states, then minimize the DFA again. It is clear that for some au-
tomata, this process can produce a hyper-minimized result. For exactly which
automata is this true?

References

1. Badr, A., Geffert, V., Shipman, I.C.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO - Theoretical Informatics and Applications (to appear)
http://www.rairo-ita.org/articles/ita/abs/first/ita07033/ita07033.html

2. Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages. In:
Workshop on Implementing Automata. (1998) 43–56

3. Körner, H.: A time and space efficient algorithm for minimizing cover automata for
finite languages. International Journal of Foundations of Computer Science 14(2) (2003)
1071–1086

4. Câmpeanu, C., Paun, A., Smith, J.R.: Incremental construction of minimal determin-
istic finite cover automata. Theor. Comput. Sci. 363(2) (2006) 135–148

5. Sipser, M.: Introduction to the Theory of Computation. International Thomson Pub-
lishing (1996)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computability. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2000)

7. Watson, B.W.: A taxonomy of finite automata minimization algorithms. Technical
report (1994)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT
Press, Cambridge, MA, USA (2001)

